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Key Activities of the Prime Contractor, Nadrian C. Seeman of the Chemistry
Department of New York University

The tasks undertaken for this project include: (1) defining and fabricating new DNA-based
photonic band-gap wave-guiding structures to facilitate quasi-optical control of signal
propagation in integrated molecular/electronic systems; (2) defining and studying new bio-
inspired paradigms for establishing electro-optical communication channels and
propagating wave control methodologies useful for incorporation into biologically-based
devices and components; and (3) defining and, modeling, fabricating and testing hybrid
multi-terminal bio-molecular devices that can achieve (a) control and manipulation of signal
propagation, and (b) enhanced sensor function, using molecular-level characteristics.  

The NYU group focused in area (1) on the construction of two-dimensional DNA
arrangements with periodicities that far exceed those that have been reported previously.
During the first year, a student, Hong Zhong, worked on this task full time.  The approach
at that time entailed using a 2D variant of the Yan method1 for building 2D arrays.  We
chose to make a 5 x 7 array, as shown on the right.
Such an array entails unique long strands on each of
the four edges, and strands with multiple use in the
central portions, both vertical and horizontal.  We
designed such a system from DNA parallelograms2.
We spent quite a lot of time in building the four
unique edge strands.  They are too long to synthesize
directly on the DNA synthesizer, so it is necessary to
ligate their components together.  They entail ligation
of molecules that of necessity contain common
elements, and that has led to certain difficulties in the ligation of their components.  We
have preliminary indications that we have overcome these problems in at least one strand.

A postdoc during that time is worked on the task of attaching gold nanoparticles to DNA
lattices.  This is a task preliminary to the addition of photonic materials to the DNA
lattices.

During the second year, we switched from the Yan method to the  Rothemund method3 for
building 2D arrays.  The components are squares about 100 x 100 nm.  We have focused
on this approach through the current time in this aspect of the work.

Also during the second year of the project, we were successful in arranging metallic
nanoparticles into 2D checkerboard patterns.4  This work used robust motifs, and the
method has been used recently in organizing dyes in 3D crystals, which were achieved later
in the project.5

A second success during the second year was the organization of functional DNAzymes in
2D arrays.6  Thus, it is possible to place catalytic activities at specific loci within a 2D
crystalline network just through sequence design.

A major achievement during this period is the organization of sequence-dependent DNA-
based nanomechanical devices into 2D DNA lattices.7 This work leads to the capability of
being able to change the spatial organization of components in a lattice.

During the third year, we learned in part how to work with the Rothemund arrays.  We are
quite successful in building up larger structures in one dimension, as seen below but 2D
control is more elusive.



One-dimensional origami array. (A) Schematic view of a single B tile for the construction of the
1D array. There are four ‘donor’ sites in the left edge of the tile B and four ‘acceptor’ sites at right. The
protruding triangles represent four 8 nucleotide sticky ends, which are complimentary to the ‘acceptor’
sites to the right, specifically. (B) illustrates a linear structure with four tiles. (C) AFM images of the 1D
array.

During the fourth year, we were more successful with the 2D Rothemund arrays.  This can
be seen in the image below.

A recurring problem is that the crystals grow much better in the longitudinal direction.  We
have a plan to correct that, which is currently undergoing testing.

As noted above, we have been very successful in building a variety of designed and self-
assembled 3D crystalline arrangements based on tensegrity triangles.5  A picture of the



molecular structure, established by X-ray crystallography is shown below in stereographic
projection.

Designed Crystalline Arrangement. (a)  Surroundings of a Triangle.  This stereoscopic image
distinguishes three independent directions by base pair color.  The central triangle is flanked by six other
triangles.  (b) Rhombohedral Cavity Formed by Tensegrity Triangles.  This stereoscopic image shows
seven of the eight triangles that comprise the rhombohedron’s corners.  The cavity outline is drawn white.
The rear red triangle connects through one edge each to the three yellow triangles in a plane closer to the
viewer.   The yellow triangles are connected through two edges each to two different green triangles that
are even nearer the viewer.

We have been able to include more than one molecular species within a crystal.  In the
image below, we have attached fluorescein dye to 0, 1 or both of the different triangles,
which is evident from the colored intensity of the crystals.



Thus, in summary, we have established a number of features of the control of the structure
of matter using DNA that have not been described previously.  These include the
organization of nanoparticles  in 2D, the organization of nanomechanical devices in 2D, the
organization of DNAzymes in 2D, the longer-distance organization of Rothemund tiles in
1D and 2D and the macroscopic 3D organization of DNA and pendent dyes.  All of these
advances will serve to build deliberate photonic band gap materials.
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Technical Report:

Part I: 2D Photonic Crystal Propagation Codes Incorporating Conductive Losses and
Frequency-Dependent Materials

I. Background
The control and detection of electromagnetic(EM) radiation has been of the cornerstones
of technology for more than a century. First proposed decades ago, photonic crystals are
a class of materials developed for the control of light propagation. The crystals are, for
the most part, man-made, microscopically periodic materials. The spatial periodicity is on
the scale of the wavelength of the radiation to be controlled. Several interesting devices
using biologically-active molecules embedded in a photonic crystals structure have been
proposed [1,2] for the control and detection of terahertz radiation. The embedding lattice
is itself notable, namely, it consists of strands of artificially produced DNA. The
molecules may possibly be attached to the DNA by small metallic(gold) particles.
The algorithms described here are designed for the investigation of the propagation of
electromagnetic waves in such a lattice. There is a periodicity in optical properties in the
two directions perpendicular to that of the strands of DNA and it is assumed that the
material is uniform in the direction parallel to the strands. In addition to losses by
reflection, the EM waves can suffer absorption by the DNA material, by the molecules,
and by the gold particles. Furthermore, the frequency dependence of the optical response
of the active medium is key to the operation of the devices of interest.
In previous theoretical work involving photonic crystals built with DNA carried out in
this laboratory, the MPB program[3] developed at MIT was used to study the optical
behavior. The design of MPB does not include provisions for the incorporation of
absorption or of frequency-dependent material. The algorithms presented here can take
both effects into account.
The intended applications of these results is to arrangements in which EM waves of
specified frequencies originate in controllable sources and then impinge on photonic
crystals of finite thickness. Besides the reflections that occur on entrance and exit because
of impedance mismatch, the material itself may attenuate the signal by a combination of
reflection and absorption and these properties are the ones to be investigated via the
algorithms presented here. Once the propagation constant (possibly complex) of a mode
has been determined, one can use the well-known procedures of scattering theory to
determine the appropriate combinations of forward and reflected waves.

In the following section we present the basic theory of the algorithms, first for the
"TE" case, for which the electric field is taken to be parallel to the direction of the DNA
strands, and perpendicular to the plane of propagation and then the "TM" case where
now the magnetic induction field is parallel to the strands. Some typical results are
illustrated further on.
II.  FORMULATION
A. Physical Specification

The plane of propagation is taken to be the x-y plane. Each of the fields is
expressed as a plane wave,



      )exp( tirik ω−⋅ ,
multiplied by  a doubly-periodic function  of x  and y. Here, the spatial periodicities are
Lx and Ly, and the corresponding Fourier space is characterized by  xK 0  =2! /Lx   and

yK 0  =2! /Ly. The vector k (=( yx kk , )), the propagation vector,  equals k{cos(_),sin(_)},
where k=|k| is the wave number.  In the TE case, for example, the electric field would
have the form:

 zE = ∑
mymx

mymx
,

],[α )](exp[ 00 yKmxKmi yyxx +

                     exp[ i k · r - i _ t].                               (Field-1)

Instead of xB  and yB  we use the components of B parallel and perpendicular to k:

||B   = ∑
mymx

mymx
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],[β   )](exp[ 00 yKmxKmi yyxx +

                   exp[ i k · r - i _ t].                               (Field-2)

⊥B = ∑
mymx

mymx
,

],[γ    )](exp[ 00 yKmxKmi yyxx +

                   exp[ i k · r - i _ t].                               (Field-3)

    These forms are to be inserted into the Maxwell equations and the common factor exp[
i k · r + i _ t] is canceled out after the differentiations are performed. Following this,
Fourier analysis is carried out by multiplying each equation by    
              )](exp[ 00 yKlxKli yyxx +−

and then integrating them  over a "unit  cell"
       [ 0<= x < Lx , 0 <= y < Ly ]..

The essence of photonic propagation, as opposed to propagation in a uniform medium,
is the variation of _ over a unit cell. As a result of the integrations indicated above, the
Fourier components of   the dielectric function, , will emerge and be found to couple the
coefficients _[ yx mm , ] belonging to different values of  xm and ym .

As indicated above, it is useful to use the components of the fields along and
perpendicular to the wave vector. The unit vector ||e  taken parallel to the direction of
propagation, ze    is perpendicular to the x-y plane, and ⊥e  lies in that plane but is
perpendicular to ||e . In that order they form a right-handed triad.

B.  TE (photonics TM) Case
    The z component of the Maxwell-Ampere Law is
            0)( 2

1 =×∇−∂⋅ BcEe tz ε          



where  1ε   is  0/εε , µ   is taken to be  0µ ,c is the speed of  light  in vacuum, and

tt ∂

∂
≡∂ .

Performing the resolution of B yields

0)(1
||||12 =∂−∂+∂ ⊥⊥ BBE

c ztε  ,                        (TE-1)

where the symbols ∇⋅≡∂ |||| e , and ∇⋅≡∂ ⊥⊥ e have been introduced..
These operators are ultimately to be interpreted in terms of the expressions for the

fields (Field 1, 2, 3) given above. For example, ⊥∂  will become
))cos()sin(( 00 θθ yxxx KmKmi − ,

 where cos(_)= x/|r|. The product will be a convolution sum that can be written as a matrix
of the Fourier coefficients of   1ε acting on a vector of the Fourier coefficients, [mx,
my], of zE . Note that operating with ||∂  on the fields involves a term with k in addition

to those with xK 0 and/or yK 0 .
 Faraday's Law

                      0=×∇+∂ EBt

can be resolved into the  perpendicular and parallel components as

                     0|| =∂+∂ ⊥ zt EB                                (TE-2)                                           

and

                      0|| =∂−∂ ⊥ zt EB                               (TE-3)

 The last equation does not contain the wave number, k, and hence cannot be used
directly to obtain an eigenvalue equation for it. One proceeds as follows:

 Apply t∂  to Eq.(TE-1), interchange t∂  and ⊥∂  in the last term and substitute (TE-3)
for ||Bt∂  to get  

  0)1(1
||2 =∂∂+∂−∂−∂∂ ⊥⊥⊥ ztztt EB
c

E
c

   (TE-1')

Eqs (TE-1’) and (TE-2) can be written in symbolic matrix form .
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Insertion of the Fourier expansions Eqs.(Field 1, 2, 3) leads directly to the eigenvalue
equation for k,.
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The vector of fields is formed from the Fourier coefficients  and . KA and KP are
block diagonal matrices(see below) as is"-1",  while ],;,[~~

yxyx mmllεε = is the matrix of

Fourier coefficients of 1ε . It is necessary, of course, to truncate the infinite matrices,
choosing, say, [-Nx, Nx]  and [-Ny, Ny] to be the ranges of xm and ym , respectively, in
the Fourier expansions given in Eqs(Field 1,2,3)). Each block in (TE-Eigen) is of
dimension (2 Nx +1)  (2 Ny + 1)  and the mapping of  ],;,[ yxyx mmll  to the two-
dimensional form of (TE-Eigen) is

  row index=   ( yl  + Ny ) (2 Nx + 1) + xl  +  Nx + 1,

  column index =   ( ym  + Ny) (2 Nx +1) + xm  + Nx + 1.

The KA and KP matrices are given by

  KA ],;,[ yxyx mmll =

 ))sin()cos(( 00 θθ yyxx KlKl +  mxlx,δ myly ,δ

 KP ],;,[ yxyx mmll =

))cos()sin(( 00 θθ yyxx KlKl −  mxlx,δ myly ,δ

where mxlx,δ   and myly ,δ   are  Kronecker deltas.

C. TM ( photonics TE) Case

The TM case is handled in much the same way except that ED ε= plays a
slightly more complicated role.

Once again, we use the Faraday's law, this time for the z component of B

                 0|||| =∂+∂−∂ ⊥⊥ EEBzt                     (TM 1)



The parallel and perpendicular components of the Maxwell-Ampere Law are
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Proceeding as before,  one obtains
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   Again, in symbolic form, there results:
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where
KPKP 1~~ −=Π εε ,

and
  1~~ −=Λ εεKA  .

    The eigenvalue equation for k follows once again from the
necessity that determinant of the matrix in Eq.(TM-4) vanish
for the existence of a non-trivial solution.

D. Inclusion of Conductivity

  As indicated above the inclusion of the effects of conductivity() on the propagation
of waves in a photonic crystal is required by the application. For fields with the steady-
state time dependence it is sufficient to make the replacement of  by the frequency
dependent
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III.  Eigenvalues of Uncoupled Modes

 The TE mode field configuration is considered here.
 Should a unit cell be filled completely with one material then ε~  is a multiple of the

identity matrix. The Fourier modes would be decoupled and the eigenvalue equation for
any one mode would be given by (det stands for determinant)
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 where ka and kp are the  elements of KA and KP for the values  )(),( yyxx mlml ==

while 1ε  is the average value of 1ε  over one cell of the lattice.
The eigenvalues of k are

       22
1 )( kpckak −±−=±
ωε

Except for the special case, 0== yx ll , and for  small , k has a constant real part, -ka,

and an imaginary part that decreases with increasing . When 1ε
22)( kpc ≥ω , k becomes

purely real..
If the dispersion relation just given is written as

=++ 22)( kpkak 1ε
2)( c

ω ,

it resembles that for modes in a waveguide.  By analogy, the frequency region for which

1ε
22)( kpc <ω   will be referred to as cutoff.

IV. APPLICATIONS

The presence of molecules possessing a resonant frequency in the neighborhood of a
cutoff region of the photonic crystal can significantly modify the k- characteristics of the
lattice from those in the absence of the molecules. In particular, the magnitude of the
reflection of waves in the frequency range below cutoff can be lowered because of the
raising of the index of refraction by the molecules. This decrease in the attenuation takes
place despite the added absorption due to the molecules.

To illustrate this effect we carried out a computer simulation was carried out in which
the dimensions of the unit cell were Lx=43 micros and Ly=110 microns.  In each cell half
was filled with material for which 1ε =1.33 and the other half   with either the molecules
described below or with air. The split in properties took place halfway across the unit cell
in the x direction, which was the direction of propagation.



Figure 1.  The real (dashed curve) and imaginary(solid curve) parts of the dielectric
response 1ε

In Fig. 1 the relative dielectric function, 1ε , according to the Drude model
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is shown for the parameters 0.12 =πω p , 4.32 =πωR  3.02 =πγ , all in THz. The

value of pω  is somewhat unrealistically high but chosen for illustrative purposes.

Figure 2. Alteration of reflection in photonic crystal propagation due to resonant
molecules.

The alteration of the absorption (reflection) coefficient by the presence of such a
molecular resonance is illustrated in Fig 2. More precisely, Ik , the imaginary part of k, is
plotted as a function of frequency both for no molecules (dashed curve) and  in the
presence of molecules (solid curve)  in half the cell. The decrease in Ik  for the waveguide-



like mode below the molecular resonance is apparent.  

Below about 2.5 THZ the wave is attenuated, decaying as )exp( xkI− because of
reflection; this is the cutoff region described in the previous section. Because of the
increased index of refraction due to the molecules, the mode “comes out of cutoff” at a
lower frequency.  

Schematically, for the parameters stated above, given a source of radiation with a
frequency at 2.4 THz incident on one face the crystal, and a detector at the opposite side,
the presence of molecules in sufficient concentration could cause a substantial rise in the
detected signal.
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Part II  Photonic BioSensors

Electromagnetic wave propagation in two-dimensional photonic crystal is investigated.
The influence of metal such as gold on the propagation characteristics in the visible region
is considered. Gold shows to have impact on the lower frequencies. When go to the
Teraherz regime, molecules are embedded to the unit cell to see its influence on the
propagation behavior. It shows that by selecting proper molecules, the cutoff frequency
is shifted. However, DNA frame also plays a big role. Based on the calculation, DNA
frame is seen not to be a neutral background, instead it brings loss in the low frequency
range. To summarize, the investigation of electromagnetic wave propagation in the two-
dimensional photonic crystal deepens the understanding of propagation mechanisms and
serves as basis of novel nanodevices.

1. Electromagnetic Wave Propagation in Two-dimensional Photonic Crystal

At ISSSR 2008 it was illustrated that the addition / removal of resonant molecules
could alter the propagation in photonic crystals, particularly at the so-called cut-
off. Since then we have been investigating the suitability of DNA to serve as the
backbone of such a lattice in two regions of the EM spectrum – the Thz and the
visible to near UV regimes.

Fig. 1 Scheme of the unit cell



Fig. 2: Frequency vs. K

Fig. 2 shows the frequency behavior in the first Brillouin zone. We are concerned
about the change of cut off frequency.

a. Effects of Gold in visible region
Gold is used in order to see the effects of metal on the propagation
characteristics. The optical response of Gold can be described as

Where1 .

Fig. 3: Metallic response _/ _0



Fig. 4: Optical and dielectric properties of DNA in the extreme ultraviolet

Fig. 5 shows the combined effects of DNA and gold rod, and Fig. 6
illustrates the influences of DNA and gold cube.



Fig. 5: Real part of wavenumber.

Fig. 6: Real part of wavenumber.



b. Teraherz Propagation

At near-infrared or visible wavelengths, however, it is difficult to
manufacture PC structures; the richness of teraherz region in the
spectroscopy of small and large molecules in gas and liquid phase together
with the ease of fabrication for applications in this wavelength range make
PCs attractive for biological and chemical sensing.  Relatively large size of
lattice – tens of microns -- should permit easy flow of molecules
throughout photonic crystal.

Teraherz propagation in the unit cell of DNA lattice2 has been treated.
Change in propagation characteristics can serve as basis for a sensor of a
specific gas.

Fig. 7: Real part of wavenumber for frequency in Teraherz region.



Fig. 8: Imaginary part of wavenumber.

c. Effects of DNA frame

Fig. 9: Imaginary part of wavenumber for thinner DNA frame. No
molecule is embedded.



Fig. 10: Imaginary part of wavenumber for thicker DNA frame. No
molecule is embedded.

From Figs 9 and 10 it can be seen that DNA contributes to the loss at
lower frequenies.

2. Reduction Method

Considerable progress was made in speeding up both the TE and TM codes
written in Mathematica by means of compilation. It seems that we can now
use Mathematica, with its conveniences, for detailed calculations, even using
laptop computers.

A new version of the perturbation scheme has been developed and
implemented in (compiled) Mathematica. The basic approximation made is
that one can find the propagation characteristics in the first Brillouin zone by
considering only those modes which, if uncoupled, would lie in the first two
Brillouin zones. A simple and efficient method, which we call the Reduction
Method, collapses the mode space appropriately, leading to an eigenvalue
equation for the wavenumbers of significantly smaller dimensionality.

The number of modes taken into account is controlled by a single parameter.
This permits a simple method of checking the accuracy of the approximation;
one need only increase the number of zones included and compare the results.



1.01.52.0-0.03-0.02-0.010.010.020.03

Fig. 11: Real Part of Wave-number (reciprocal nm). Red Dots –Full 81 by 81
matrix; Blue lines 29 by 29 reduced matrix.

1.01.52.0-0.2-0.10.00.10.2

Fig. 12: Imaginary Part of Wave-number (reciprocal nm). Red Dots –Full 81
by 81 matrix; Blue lines 29 by 29 reduced matrix.

3. Summary



The propagation characteristics of DNA in the Thz and visible has been
investigated. The results are encouraging.

The effects of metal (gold) placed in each unit cell has been calculated.

Algorithmic advances—perturbation theory and simpler formulation have been
made.



Statement of the Problem Studied

We have explored both experimentally and theoretically the issues involved in the
preparation of photonic band gap materials using DNA scaffolding for their organization.
Experimental approaches entailed learning how to organize materials other than DNA in 2D
and in 3D.  These included metallic nanoparticles, dyes, DNAzymes and DNA-based
nanomechanical devices.  A lot of effort was devoted to increasing the sizes of the
separations between repeat units in 2D.  Small arrays of 100 nm separations were obtained.
Macroscopic arrays of 7-14 nanometer separations were also obtained.  Theoretical
approaches included [1] 2D photonic crystal propagation codes incorporating conductive
losses and frequency-dependent materials, and [2] photonic biosensors.

Summary of Most Important Results

Experimental:  We have established a number of features of the control of the structure of
matter using DNA that have not been described previously.  These include the organization
of nanoparticles  in 2D, the organization of nanomechanical devices in 2D, the organization
of DNAzymes in 2D, the longer-distance organization of Rothemund tiles in 1D and 2D
and the macroscopic 3D organization of DNA and pendent dyes.  All of these advances will
serve to build deliberate photonic band gap materials.

Theoretical: [1]  The presence of molecules possessing a resonant frequency in the
neighborhood of a cutoff region of the photonic crystal can significantly modify the k-
characteristics of the lattice from those in the absence of the molecules. In particular, the
magnitude of the reflection of waves in the frequency range below cutoff can be lowered
because of the raising of the index of refraction by the molecules. This decrease in the
attenuation takes place despite the added absorption due to the molecules.  To illustrate this
effect a computer simulation was carried out in which the dimensions of the unit cell were
Lx=43 micros and Ly=110 microns.  In each cell half was filled with material for which

1ε =1.33 and the other half   with either the molecules described below or with air. The split
in properties took place halfway across the unit cell in the x direction, which was the
direction of propagation.  [2] (a)  The propagation characteristics of DNA in the Thz and
visible has been investigated. The results are encouraging. (b) The effects of metal (gold)
placed in each unit cell has been calculated. (c) Algorithmic advances—perturbation theory
and simpler formulation have been made.
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